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ABSTRACT
A modified perturbation scheme is developed to investigate the effect of strong
amplitude-modulated signal on the excitation of super- and sub-harmonic resonances
in a Duffing-type system. The effect of varying amplitude of the primary and mod-
ulating signals on both super- and sub- harmonic frequency-response curves of the
system have been investigated. The presence of modulating signal have been shown
to induce newly generated super-harmonic resonance of order r = 4, 5, and 6 in the
system.
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1. Introduction

In recent years, Duffing-type oscillator has been extensively investigated as it is ul-
timately tends to simulate the behaviour of various physical systems [1, 2] and is
used in various other engineering problems [3]. Resonance is one of the important
dynamical phenomena exhibited by a forced nonlinear system . In the present work,
we have considered the analysis of phenomenon of resonance in Duffing-Helmholtz
system excited by an amplitude modulated signal. The analysis of primary resonance
for harmonically excited Duffing-Helmholtz oscillator has been earlier studied exten-
sively by many researchers in their respective fields [4–9]. Such an oscillator has also
been studied earlier, in connection with the non-linear stellar pulsation [10, 11] and
engineering problem [12].

In the present work, a given harmonically forced Helmholtz-Duffing system is first
transformed into a simple Duffing-type system. Using a multiple time-scales pertur-
bation method, we investigate the effect of strong forcing, i.e., strong amplitude-
modulated signal, on the newly generated secondary resonances in the transformed
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Duffing-type system. Subsequently, the frequency response curves for newly generated
secondary super-harmonic resonances have been obtained and analyzed for different
values of the amplitude of the amplitude-modulated forcing signal. In addition, the
effect of the strong amplitude-modulated signal on the sub-harmonic resonance of
order 3 has also been studied.

2. Response of the Duffing-type System to strong Amplitude
Modulated Excitation(AME) using Modified Multiple-time Scale
Perturbation Method (MMTPM)

A special type of nonlinear damped system, known as the Duffing-Helmholtz oscillator
comprises of cubic as well as quadratic nonlinear terms [8, 9, 11, 13, 14]. Such a system
is represented by

Q̈+ 2µ0Q̇+ ω2
0Q+ I1Q

2 + I2Q
3 = 0, (1)

where µ0, ω0 refer to the damping coefficient and the natural frequency, respectively
whereas, I1 and I2 are the quadratic and cubic nonlinearity parameters of the system.
In absence of the quadratic nonlinearity, the above written equation represents the
Duffing Oscillator. The restoring force of Duffing-Helmholtz oscillator is characterized
by asymmetric potential. To transform the asymmetric potential to a symmetric one,
Cardano’s transformation is applied to the Duffing-Helmholtz system and the result-
ing equation represents a Duffing-type system. We are interested in analyzing the
secondary resonances in the system which is acted upon by an amplitude-modulated
harmonic excitation, f . Applying the Cardano’s transformation, q(t) = Q(t) + I1

3I2
,

the system (1) will now becomes harmonically excited Duffing system

q̈ + 2µ0q̇ +Ω2
0q + I2q

3 = f − k0, (2)

where Ω2
0 = ω2

0 − I21
3I2

represents the revised frequency, k0 =
2I31
27I22

− ω2
0

I1
3I2

may be

considered as a steady bias for the oscillator and

f = [f1 + 2g1 cosΩM t] sinΩt (3)

is the time dependent AME supposed to be controlling the dynamics of the system
externally.

In this work, we consider the following two settings:
(i) When the frequency of the modulation ΩM is equal to the excitation frequency

Ω, i.e., ΩM = Ω and
(ii) when the frequency of the modulation ΩM is not equal to the excitation fre-

quency Ω and ΩM << Ω.
As per the above mentioned situations, the AME f would be represented by

(i) f = f1 sinΩt+ g1 sin 2Ωt and (ii) f = (f1 + 2g1) sinΩt, (4)

respectively.
It may be noted that in situation (ii), the forcing functions appears as only har-

monically excited frequency Ω but with a scaled amplitude i.e., f1 + 2g1.
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We now intend to take up the situation (i), when ΩM = Ω and MMTPM will be used
for the analysis of AME induced secondary resonance in a strongly damped Duffing-
type system. In this formalism, we invoke two transformations [15]. First one involves
the transformation of the perturbation variable, ϵ, to a new variable, α = α(ϵ, a0), as

α =
ϵa20

4(Ω2
0 +

3
4ϵa

2
0)
, such that ϵ =

4α

a20(1− 3α)
Ω2

0, (5)

where a0 is the amplitude of the fundamental harmonic. Therefore for large values of
ϵa20 , the value of α → 1

3 .
Second one involves Lindstédt-Poincaré transformation, T = Ωt [19,25,26] and fol-
lowing [11,17,27,28], square of the excitation frequency Ω2 may be defined by the
following expressions, as

Ω2 = p

(
Ω2

0 +
3

4
ϵa20

)
(1 + ασ) ,

=⇒ Ω2 = pΩ2
0

(
1

1− 3α

)
(1 + ασ) , (6)

where p is a positive real number and σ is the detuning parameter [19]. Up to the first
order Ω in terms of α may be written as

Ω ≃ √
pΩ0(1 + ασM ) with σM =

1

2
(3 + σ). (7)

We call σM as the modified detuning parameter.

With the introduction of the new expansion parameter, α and Ω2, defined in eqs.(5)-
(6), respectively, we analyze the response of strongly nonlinear AME excited Duffing-
type system which is now represented as follows:

Ω2q′′ + 2ϵµq′ +Ω2
0q + ϵIq3 = (f1 sinT + g1 sin 2T )− ϵk. (8)

Substituting for Ω2, the above written equation becomes

(1 + ασ)q′′ + 2ηαq′ +
1− 3α

p
q +

4αI

p
q3 =

1− 3α

p
(F1 sinT +G1 sin 2T )

− α
K

p
, (9)

where ′ defines the derivative with respect to T . Further, we have used the definitions,

η =
4µΩ

a20p
, I =

4I2
a20

, F1 =
f1
Ω2

0

, G1 =
g1
Ω2

0

, K =
4k

a20
. (10)

3
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Next, the use of the multiple time-scale perturbation scheme, i.e.,

T (T0, T1, · · · ) ≡ T (T0, αT1, · · · ), ∴
d

dT
=

∂

∂T0
+ α

∂

∂T1
+ · · · .

d

dT
= D0 + αD1 + · · · and

d2

dT 2
= D2

0 + 2αD0D1 + · · · (11)

q(T, α) = q0 + αq1 + · · ·

into eq.(9) results in the following set of equations,

α0 : D2
0q0 +

1

p
q0 =

(F1 sinT0 +G1 sin 2T0)

p
, (12)

α1 : D2
0q1 +

1

p
q1 = −σD2

0q0 − 2D1D0q0 − 2ηD0q0 +
3

p
q0

−I

p
q30 − 3

(
F1 sinT0 +G1 sin 2T0

p

)
− K

p
. (13)

Observe that eq.(12) could be viewed as a simple harmonic oscillator with nat-
ural frequency 1/

√
p, excited by two superposed harmonic signals of amplitudes

F1/p and G1/p with frequencies 1 and 2, respectively.
Solution for q0(T) would now be

q0(T ) = A(T1)e
iT0/

√
p + Ā(T1)e

−iT0/
√
p +XeiT0 + X̄e−iT0 + Y eiT0 + Ȳ e−iT0 , (14)

where

A(T1) =
1

2
a(T1)e

iϕ(T1); X = −ix, Y = −iy (15)

with

x =
F1

2(1− p)
and y =

G1

2(1− 4p)
(15(a))

Ā(T1), X̄ and Ȳ are complex conjugates of A(T1), X and Y , respectively. Using
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eq.(14) into eq.(13) along with eqs.(15) results in the following expression, as

D2
0q1 +

1

p
q1 =

[
a

2p
(σ + 3)− i

a′
√
p
+

a
√
p
ϕ′ − i

a
√
p
η − 3

I

p

{
1

8
a2 + x2 + y2

}
a

]

× ei(T0/
√
p+ϕ)

− i

[
σx+ 2iηx+

3

p
x− 3

I

p
x

{
x2 +

a2

2
eiϕ + 2y2

}
+

3F1

2p

]
eiT0

− i

[
4σy + 4iηy +

3

p
y − 3

I

p
y

{
y2 +

a2

2
e2iϕ + 2x2

}
+

3G1

2p

]
e2iT0

− i
I

p

[
a3

8
e3(iT0/

√
p+ϕ) + x

{
x2 − 3y2

}
e3iT0 + 3x2ye4iT0 + 3xy2e5iT0

+ y3e6iT0
]
− 3I

p

[
axy

{
ei{(1/

√
p−1)T0+ϕ} + ei{(1/

√
p+1)T0+ϕ}

}]

+
3I

2p

[
ax2

{
ei{(1/

√
p−2)T0+ϕ} + ei{(1/

√
p+2)T0+ϕ}

}]

+
3I

2p

[
ay2

{
ei{(1/

√
p−4)T0+ϕ} + ei{(1/

√
p+4)T0+ϕ}

}]

+ i
3I

4p

[
a2x

{
ei{(2/

√
p−1)T0+2ϕ} − ei{(2/

√
p+1)T0+2ϕ}

}]

+ i
3I

4p

[
a2y

{
e2i{(1/

√
p−1)T0+ϕ} − e2i{(1/

√
p+1)T0+ϕ}

}]

+
3I

p

[
axy

{
ei{(1/

√
p−3)T0+ϕ} + ei{(1/

√
p+3)T0+ϕ}

}]
+ c.c.− K

p
, (16)

Here ′ corresponds to the derivative of the argument with respect to time T1. It may
be observed that eq.(16) further provides the general secular term as

a

2p
(σ + 3)− i

a′
√
p
+

a
√
p
ϕ′ − i

a
√
p
η − 3I

p
a

{
1

8
a2 + x2 + y2

}
= 0. (17)

Equation (17) suggests that the sub-harmonic resonance of order three, i.e., l = 3
and the super-harmonic resonances of orders, r = 3, 4, 5, 6, are present for the
AME excited Duffing-type system. Here, because of the presence of modulating signal,
new super-harmonic resonance of order r = 4, 5 and 6 are observed in the frequency-
response of the system.

2.1. Super-harmonic Resonance

In the case of third order super-harmonic resonance (r = 3), the secular term also
includes the coefficient of exp(3iT0) and hence, the complete secular term would be

a

p
σM − ia′

√
p
+

a
√
p
ϕ′ − ia

√
p
η − 3I

p

{
1

8
a2 + x2 + y2

}
a− iI

p

{
x3 − 3xy2

}
ei(ασM−ϕ) = 0.

5
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Putting ασM − ϕ = γ, the secular term would be

a

(
1

p
+

1
√
p

)
σM − i

a′
√
p
+

a
√
p
γ ′ − i

a
√
p
η − 3I

p
a

{
1

8
a2 + x2 + y2

}

− i
I

p

{
x3 − 3xy2

}
eiγ = 0. (18)

Now equating real and imaginary parts of eq.(18), we get

a

(
1

p
+

1
√
p

)
σM − a

√
p
γ ′ − 3I

p

{
1

8
a2 + x2 + y2

}
a+

I

p

{
x3 − 3xy2

}
sin γ = 0, (19)

a
√
p
η +

a′
√
p
+

I

p

{
x3 − 3xy2

}
cos γ = 0. (20)

In steady state condition, last two equations, eqs.(19) and (20), reduce to
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Figure 1. Frequency Response curves for r = 3

with p = 1.5 and ΩM = Ω.
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Figure 2. Frequency Response curves for r = 3

with p = 1.5 and ΩM << Ω.

a

p
(1 +

√
p)σM − 3

I

p

{
1

8
a2 + x2 + y2

}
a = −I

p

{
x3 − 3xy2

}
sin γ, (21)

a
√
p
η = −I

p

{
x3 − 3xy2

}
cos γ. (22)

The modified detuning parameter, σM , in the case of super-harmonic resonance of
order r = 3, is given by

σM =
1

1 +
√
p

[
3I

(
1

8
a2 + x2 + y2

)
±
{
I2x2

a2
(
x2 − 3y2

)2 − η2p

}1/2
]

(23)

We have plotted the frequency response curves for both the situations, i.e., ΩM = Ω
and ΩM << Ω for comparison. Figures (1) and (2) are plotted for different values
of f1 with p = 1.5 which further clearly shows the distinction between the responses
in the two cases sited earlier. Fig. 3 further illustrates the frequency response, for
the case ΩM = Ω, obtained for p = 1.35. To observe the effect of the amplitude of
modulation, the frequency response curves are plotted for g1 = 0 and 5 for fixed
value of f1(= 1) and p(= 1.5) (Fig. 4). It is found that the absence of g1 reduces the
amplitude, remarkably.
The increase in non-linearity parameter I2 increases the amplitude and the resonant
frequency, as well. Comparing the plots with different values of p, with p = 1.5 (Fig.5)

6
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and with p = 1.35 (Fig. 6), for varying I2, it is observed that for larger value of p,
the amplitude as well as, the resonant frequency are less, compared to smaller values
of p. The coefficients of e4iT0 , e5iT0 and e6iT0 contribute to the secular terms for the
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Figure 5. Frequency Response curves for r = 3
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Figure 6. Frequency Response curves for r = 3

with p = 1.5 and different values of I2.

newly generated 4th, 5th and 6th order super-harmonic resonances for r = 4, 5 and
6, respectively. Therefore, the modified detuning parameter σM for super-harmonic
resonances in different cases could be written, respectively, as:
Super-harmonic Resonances of order r = 4, 5 and 6

σM (r = 4) =
1

1 +
√
p


3I


1

8
a2 + x2 + y2


±


3I x2y

a

2

− η2p

 1
2


 , (24)

σM (r = 5) =
1

1 +
√
p


3I


1

8
a2 + x2 + y2


±


3I xy2

a

2

− η2p

 1
2


 , (25)

σM (r = 6) =
1

1 +
√
p


3I


1

8
a2 + x2 + y2


±


I y3

a

2

− η2p

 1
2


 . (26)

The plotted frequency response curves for super-harmonic resonance of order r = 4
also suggests an increase in the amplitude and the resonant frequency with increase
in the amplitude f1 of the excitation (figs. 7 & 8), as in the case of r = 3.
The frequency response curves for r = 5 and 6 (Figs. 9 & 10), show that an increase
in excitation amplitude produces an increase in resulting amplitude and the resonant
frequency, but, jump-up and jump-down phenomena are not observed for the given
parameters.
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2.2. Sub-harmonic Resonances

For the system we have considered, only a single sub-harmonic resonant state, i.e.,
of order l = 3, is present. For l = 3, the secular term generated will include the
coefficient of e{−i(2/

√
p−1)T0}, which is −3I

p Ā
2X. Therefore, now the secular term in

this case would be

a

p
σM − ia′

√
p
− ia

√
p
η +

a

3
√
p
σM − a

3
√
p
γ ′ − 3Ia

p

{
1

8
a2 + x2 + y2

}
− i

3I

4p
a2xeiγ = 0.

where γ = σMT1 − 3ϕ.

Equating real and imaginary parts from the above equation to zero, we obtain

1

3
√
p
aγ ′ =

3 +
√
p

3p
aσM − 3I

p

{
1

8
a2 + x2 + y2

}
a+

3I

4p
a2x sin γ, (27)

− a′
√
p

=
a
√
p
η +

3I

4p
a2x cos γ. (28)

In steady state conditions, eqs.(27) and (28) reduce to

3 +
√
p

3p
aσM − 3I

{
1

8
a2 + x2 + y2

}
a = −3I

4p
a2x sin γ, (29)

a
√
p
η = −3I

4p
a2x cos γ. (30)

and ultimately, we arrive at the expression for σM for sub-harmonic resonance of order

8
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l = 3, as

σM =
3

3 +
√
p


3I


1

8
a2 + x2 + y2


±


3I

4
ax

2

− η2p

 1
2


 . (31)

The frequency response curves for sub-harmonic resonance of order l = 3 for different
values of excitation amplitude f1 and nonlinearity parameter I2 are plotted for two
settings, i.e., ΩM = Ω and ΩM << Ω. It is observed that the critical frequency gets
shifted towards higher values for ΩM << Ω compared to the situation when ΩM = Ω
(Fig. 11 - 14).

Figure 11. Frequency Response curves for l = 3

with ΩM = Ω.

Figure 12. Frequency Response curves for l = 3

with ΩM << Ω.

Figure 13. Frequency Response curves for l = 3

with ΩM = Ω.

Figure 14. Frequency Response curves for l = 3

with ΩM << Ω.

3. Concluding remarks

In this work, we have developed a frame-work to study the effect of harmonically
excited nonlinear oscillator viz., Duffing-type oscillator on the secondary resonances
of the system when the excitation amplitudes are very large. The framework involves
mainly two steps. First one redefining the new expansion parameter, α, that takes
care of very large amplitude of the excitation and second one involves the Lindestedt-
Poincare transformation involving the primary frequency of excitation. Along with the
multi-time scale perturbation, we find the analysis to be able to handle the setting
where perturbation are strong enough to excite newly generated secondary resonances
viz., super-harmonic resonances of order r = 4, 5, and 6 in the system. Limiting
ourselves to first order perturbation in terms of the new expansion parameter, α, we
obtained analytical expression for the shift in super-harmonic resonance frequency of

9



356	 International Journal of Mathematics, Statistics and Operations Research
Journal of Econometrics and Statistics Chaudhary et. al.

order r = 3, 4, 5, and 6. The frequency -response curves exhibiting hysteresis effect for
various parameters are shown in Fig. 1-6. Fig.9 & 10 further illustrate the absence
of the hysteresis effect for the specific parameters chosen. In case of sub-harmonic
resonance of order l = 3, the frequency response curves (Fig.11 & 12) indicate a
shift in the critical frequency as the parameter, f1, values get increased for setting (i)
and (ii). Further, the frequency response curves obtained in Fig.13-14 shows that for
given values of f1, g1, the critical frequency also exhibits a shift with increase in the
nonlinearity parameter, I2, of the Duffing-type system. In a subsequent report , we
plan to extend the work to higher order in the expansion parameter.

References

[1] Pezeshki, C., Dowell, E.H., 1987. An Examination of initial condition maps for the
sinusoidally excited buckled beam modeled by the Duffing equation. J. Sound Vib. 117,
219–232.

[2] Ravindra, B., Ravindra, B., 1994. Performance of non-linear vibration isolators under
harmonic excitation, J. Sound Vib. 117, 325–337.

[3] Gusso, A., Ujevic, S., Viana, R.L., 2021. Strong chaotification and robust chaos in the
Duffing oscillator induced by two-frequency excitation. Nonlinear Dyn. 103, 1955–1967.
doi: 10.1007/s11071-020-06183-4.

[4] Kovacic, I., Brenan, M.J., 2011. Background: On George Duffing and the Duffing Equa-
tion. Kovacic, I., Brenan, M.J., (Eds.), The Duffing Equation; Nonlinear Oscillators and
their Behaviour, Wiley, A John Wiley and Sons, Ltd, Publication (2011)

[5] Nayfeh, A.H., 1984. Combination Tones in Response of Single Degree of Freedom System
with Quadratic and Cubic Non-linearities. J. Sound Vib. 92, 379–386. doi: 10.1016/0022-
460X(84)90386-9.

[6] Burton, T.D., Rahman, Z., 1986. On the multi-scale analysis of strongly non-linear forced
oscillators. Int. J. Non-Linear Mechanics 21, 135–146. doi: 10.1016/0020-7462(86)90026-0.

[7] Wawrzynski, W., 2021. Duffing-type oscillator under harmonic excitation with a vari-
able value of excitation amplitude and time-dependent external disturbances. Scientific
Reports. doi: 10.1038/s41598-021-82652-z.

[8] Cheung, Y.K., Chen, S.N., Lau, S.L., 1991. A modified Lindstédt-Poincaré method
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